MULTIMESSENGER APPROACH:Using the Different Messengers

LECTURE PLAN:

1) COSMIC RAYS- proton interactions with photons, composition, nuclei interactions with photons, different photon targets

2) NEUTRINOS- presence of GZK-cutoff, photo-pion production mechanism, interaction rate, cosmic ray spectra, source distribution

3) PHOTONS- photon flux production, photon flux attenuation, competition of rates, e/y cascades

4) MULTIMESSENGER APPROACH (1)- using the different attenuation lengths, homogeneous sources, inhomogeneous sources Andrew Taylor

LECTURE PLAN:

1) COSMIC RAYS- proton interactions with photons, composition, nuclei interactions with photons, different photon targets

2) NEUTRINOS- presence of GZK-cutoff, photo-pion production mechanism, interaction rate, cosmic ray spectra, source distribution

3) PHOTONS- photon flux production, photon flux attenuation, competition of rates, e/y cascades

4) MULTIMESSENGER APPROACH (2)- candidate UHECR source, consistency check of disintegration with neutrino flux calculations rew Taylor

Different Distance Scales

Aims-part 1

- 1) A recap on the interaction rates of protons and photons in the Universe
- 2) The source distribution typically assumed
- 3) An analytic description of the of the GZK feature
- 4) The photon fraction of cosmic rays
- 5) Different source distributions

Using the Photons and Protons

10²⁰ eV particles

The Impedance of Background Radiation to High Energy <u>Protons</u>

The Impedance of Background Radiation to High Energy <u>Photons</u>

2) The source distributions typically assumed

High Energy Cosmic Ray Sources Distribution (Energy and Spatial)

Energy Distribution of Cosmic Rays

 $- dN/dE \sim E^{-2}$ motivated by first order Fermi shock acceleration theory

Spatial Distribution of Cosmic Ray Sources

 $- dN/dV \sim (1+z)^3$ (z dependence is irrelevant here, only local UHECR contribute due to the distance scales probed)

Andrew I aylor

A Homogeneous Source Distribution

The number of sources within a source shell of width dL would be proportional to dL for a local uniform source distribution

The ratio of sources from the different shells-

$$\begin{array}{c} \hline R_{n} = 1:0.3 \\ \hline R_{n} = 1:0.3 \\ \hline R_{n} = 1:0.3 \end{array}$$

The GZK Feature

für Kernshysik

3) An analytic description of the GZK feature

A Simple Analytic Description of the GZK Feature for Protons

$$\frac{N_n(E_p, L)}{N_0(E, 0)} = \sum_{m=0}^n \frac{l_0 l_m^{n-1}}{\prod_{p=0}^n (l_m - l_p)} e^{\frac{-L}{l_m}}$$

$$l(E_{p}) = \frac{l_{0}}{e^{-x}(1 - e^{-x})}$$

- where l_{0} is 1 Mpc and $x = \frac{10^{20.5} eV}{E_{p}}$

Max-Rlanck-Institut für Kernphysik

A Simple Analytic Description of the GZK Feature for Protons

$$\frac{N_{n}(E_{p},L)}{N_{0}(E,0)} = \sum_{m=0}^{n} \frac{l_{0}l_{m}^{n-1}}{\prod_{p=0}^{n}(l_{m}-l_{p})}e^{\frac{-L}{l_{m}}}$$

The same expression describes BOTH nuclei and proton attenuation!

$$l(E_p) = \frac{l_0}{e^{-x}(1 - e^{-x})}$$

– where l_0 is 1 Mpc and

$$x = \frac{10^{20.5} eV}{E_p}$$

Using these Distribution Functions to Obtain the Arriving Flux

$$N_{tot}(E_p, L) = \frac{\sum_{n=0}^{n_{max}} N_n(E_p, L)}{N_0(E, 0)}$$

the source distribution function

$$N_{p}(E_{p}) = \int_{0}^{L'} dL f(L) N_{tot}(E_{p}, L)$$

Max-Rlanck-Institut für Kernphysik

A Comparison of this Description with Monte Carlo

4) The photon fraction of cosmic rays

Arriving photon Flux from Different Shells

The Photon Fraction

5) Different source distributions

Altering the Source Distribution

or

Weighting the contribution from the more local sources to create a local overdensity

 $R_{n+1}: R_n = 1:0.5$

 $R_{n+1}: R_n = 1:0.7$

The Local UHECR Source Distribution- overdensity

Altering the Source Distribution

The Local UHECR Source Distribution- underdensity

$$\theta(E_p) \approx 0.8^{\circ} \left(\frac{10^{10}}{E_p}\right) \left(\frac{L}{10 Mpc}\right) \left(\frac{L_{coh}}{1 Mpc}\right) \left(\frac{B}{0.1 nG}\right)$$

Diffusion can be expected to increase the path length of the protons more than the photons, reducing the flux contribution from distance sources. The effect diffusion introduces is thus similar to that of a local source overdensity Andrew Taylor

Conclusion (1)

The detection of the photon fraction component of UHECR spectrum is a powerful diagnostic tool for:

- verifying the GZK origin of the cut-off/suppression feature in the UHECR spectrum
- (in conjunction with the spectral cut-off) determining the local distribution of UHECR sources

Aims-part 2

- 1) Candidate sources of UHECRs to be considered
- 2) A model for the AGN radiation field
- 3) A model for the GRB radiation field
- 4) A model for the Starburst Galaxy radiation field
- 5) A consistency check of the amount of disintegration expected under the typical optical depth assumption

Using the Nuclei to Probe Proton Interactions in the 10²⁰ eV particles UHECR Source

Source Size and B-Field Strength

Source Size and B-Field Strength

Candidate Sources: AGN- 10⁴⁴ erg s⁻¹ (luminosity break energy)

GRB- 10⁵² erg s⁻¹ (luminosity break energy)

Starburst- 10⁴² erg s⁻¹ (luminosity break energy)

Power density of Sources-

Extragalactic Cosmic Rays, $E > 10^{18}$ eV, have an energy density ~10⁻⁸ eV cm⁻³ \rightarrow 10⁻²⁰ erg cm⁻³ \rightarrow 10⁵⁴ erg Mpc⁻³

time~10¹⁷ s to accumulate

→ 10³⁷ erg Mpc⁻³ s⁻¹

n~10⁻⁵ Mpc⁻³

→ 10⁴² erg s⁻¹ per source

AGN Model and **Radiation Field** Black Body 10²⁷ Synchrotron Inverse 10²⁶ Compton 10²⁵ Jet *ئے $\gamma \simeq 10$ $E_{\gamma} dN_{\gamma} dE_{\gamma} [m^{-3}]$ 10²⁴ γ-ray $\sim 10^{-2} pc$ 10²³ 10²² wind 10²¹ 10²⁰ 10¹⁹ black 10¹⁸ accretion disk hole -2 -4 2 -6 0 4 6 8 log10 E, [eV] $\Gamma \sim 30$ $= \Gamma c \Delta t = 10^{-2} \, \mathrm{pc}$ source $= 10^{16} \,\mathrm{cm}^{-3}$ n_{v} Andrew Rlanc Taylor

AGN Model and Radiation Field Black Body 10²⁷ Synchrotron Inverse 10²⁶ Compton 10²⁵ Jet $\gamma \simeq 10$ $E_{\gamma} dN_{\gamma} dE_{\gamma} [m^{-3}]$ 10²⁴ '-rav ~10⁻² pc 10²³ 10²² wind 10²¹ 10²⁰ 10¹⁹ black 10^{18} accretion disk hole -2 2 -4 0 6 8 -6 log₁₀ E_v [eV]

NB. relativistic sources have smaller n_{y} values

NNB. n_{γ} in plasma frame is ~10¹⁶ cm⁻³ (about **0.1%** of air density in this room)

Starburst Galaxy Model and Radiation Field

Assuming Cosmic Rays are Protons

Interactions Rates in Sources- AGN

Interactions of Cosmic Ray Protons with CMB:

Photo-Pion Production-

 $p+\gamma \rightarrow n+\pi^+/p+\pi^0$,

n -> $p+e^{-}+v_{e}$

$$E_{\gamma}^{th} = m_{\pi}(1 + 2m_{\pi}/m_{p}) \sim 145 \text{ MeV}$$

note- threshold value is in proton rest frame

Neutrino Production

Diffuse Neutrino Fluxes Produced by Candidate Sources

Cosmic Ray Interactions with Radiation $pacity factor - f_{\pi}$

photodisintegration

$$l_{source} = c\Delta t$$

$$l_{interaction} = 1/(n_{\gamma}\sigma_{\Delta})$$

f = l / l

GRB-
$$f_{\pi}^{max} = 0.55$$

AGN- $f_{\pi}^{max} = 550$

Max-Rlanck-Institut für Kernphysik

Starburst Galaxy-
$$f_{\pi}^{max} = 4 \times 10^{-4}$$
 Andrew Taylor

Interactions Rates in Sources- AGN

E' dx'/dE' [Fraction of Source Size] 1e+08 π production-proton photodisintegration- iron AGN 1e+06 10000 100 1 0.01 1e-04 ¹⁶ ¹⁸ log₁₀ E' [eV] 12 14 20 22

Starburst

GRB

Ratio Between Photo-Pion and Photo-Disintegration Rates

From lecture 2:

$$R_{p,\gamma}(\Gamma) = \sigma_{p,\gamma} \int_{\frac{E_{p,\gamma} + \Delta_{p,\gamma}}{2\Gamma}}^{\frac{E_{p,\gamma} + \Delta_{p,\gamma}}{2\Gamma}} d\epsilon_{\gamma} n(\epsilon_{\gamma})$$

Applying this to photodisintegration reactions:

$$R_{A,\gamma}(\Gamma) = \sigma_{A,\gamma} \int_{\frac{E_{A,\gamma} - \Delta_{A,\gamma}}{2\Gamma}}^{\frac{E_{A,\gamma} + \Delta_{A,\gamma}}{2\Gamma}} d\epsilon_{\gamma} n(\epsilon_{\gamma})$$

Ratio Between Photo-Pion and Photo-Disintegration Rates (2)

with,

$$\sigma_{p,y} = 0.5 \text{ mb}$$
, $E_{p,y} = 310 \text{ MeV}$, $\Delta_{p,y} = 100 \text{ MeV}$

and

$$\sigma_{A_{56},\gamma}=81 \text{ mb}$$
 , $E_{A_{56},\gamma}=18 \text{ MeV}$, $\Delta_{A_{56},\gamma}=8 \text{ MeV}$

therefore

$$\begin{split} R_{A_{56},\gamma}(\Gamma) \approx & \frac{\sigma_{A_{56},\gamma}}{\sigma_{p,\gamma}} R_{p,\gamma}(15\Gamma) \\ = & 160 R_{p,\gamma}(15\Gamma) \end{split} \qquad \begin{array}{l} \text{Andrew} \\ \text{Taylor} \end{split}$$

Degree of Photodisintegration in Source Regions

Conclusion (2)

- The GRB model with near unity neutrino production opacities leads to complete disintegration of cosmic ray nuclei above 10¹⁷ eV
- The AGN model with near unity neutrino production opacities leads to complete disintegration of cosmic ray nuclei above 10²⁰ eV.
- A consistency check with the typical opacities used in UHECR interaction rate calculations within the source region reveals contradiction with the presence of Fe in the UHECRs for the GRB source model

Finally

Other messengers carrying useful diagnostic information remain available such as:

- the change in cosmic ray composition with energy
- the neutrino flavour ratios and how they change as a function of energy

.....all you need is imagination (and good physics groundwork)!

SO LONG AND THANKS FOR ALL THE FISH!!!!!!

Finally

Other messengers carrying useful diagnostic information remain available such as:

- the change in cosmic ray composition with energy
- the neutrino flavour ratios and how they change as a function of energy

.....all you need is imagination (and good physics groundwork)!

SO LONG AND THANKS FOR ALL THE FISH!!!!!!

Origin of Dip Feature in Photon Flux

 $E_{p} = 10^{19} \text{ eV}$

 $E_{p} = 10^{20} \text{ eV}$

